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Abstract
As one of the most important data structures used in al-
gorithm design and programming, balanced search trees
are widely used in real-world applications for organizing
data. Answering the challenges thrown up by modern large-
volume and ever-changing data, it is important to consider
parallelism, concurrency, and persistence. This tutorial will
introduce techniques for supporting functionalities on trees,
including various parallel algorithms, concurrency, multi-
versioning, etc. In particular, this tutorial will focus on an
algorithmic framework for parallel balanced binary trees,
which works for multiple balancing schemes, including AVL
trees, red-black trees, weight-based trees, and treaps. This
framework allows for theoretically-efficient algorithms. The
corresponding implementation is available as a library, which
demonstrates good performance both sequentially and in
parallel in various use scenarios.
This tutorial will focus on the following topics: 1) the al-

gorithms and techniques used in the PAM library; 2) the
interface of the library and a hands-on introduction to the
download/installation of the library; 3) examples of apply-
ing the library to various applications and 4) introduction
about other useful techniques for parallel tree structures and
performance comparisons with PAM.

CCSConcepts •Theory of computation→ Sorting and
searching; Shared memory algorithms; • Computing
methodologies → Shared memory algorithms.
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1 Introduction
Recently, the advent and development of shared-memory
multi-core machines has improved the computation ability to
process large-scale data in parallel and in memory. As such,
it is of great interest to have simple and efficient parallel
data structures to easily organize and process data. One of
the most important data structures for organizing data is
the balanced search tree (BST) structure, which are useful
in maintaining abstract data types such as ordered maps
and sets. This tutorial will introduce techniques to support
parallelism and concurrency in balanced search trees for
ordered sets/maps operations, show examples of applying
the tree structures in various applications, as well as discuss
some state-of-the-art tree structures.
We focus on writing simple and efficient parallel algo-

rithms for trees. This tutorial introduces an algorithmic
framework for parallel balanced binary trees [6, 20], which
bases all tree algorithms on a single primitive Join. This
framework is extendable to at least four balancing schemes:
AVL trees, red-black trees, weight-balance trees, and treaps,
and all algorithms except Join are generic across balancing
schemes. Based on this Join-based framework, this tutorial
will address techniques including many algorithms, concur-
rency, augmentation, persistence (meaning to yield a new
version on updating) andmulti-versioning.We show efficient
parallel solutions to bulk operations on trees, such as Union,
Filter,MapReduce, etc.. From a theoretical standpoint, all
algorithms on trees are work-efficient with poly-logarithmic
parallel depth.
This parallel tree framework is integrated into a C++ li-

brary called PAM (Parallel Augmented Maps) [18]. This tuto-
rial will also discuss how to use the framework and the PAM
library to solve real-world problems. The tree structure is
extendable to a variety of applications in different domains,
which is achieved by using an abstract data type (ADT) called
the augmented map [20]. Designed as a general-purpose li-
brary for parallel tree structures, this library can be directly
applied to many applications including 2D range/segmen-
t/rectangle search, inverted index searching, HTAP database
systems, multi-version concurrency control, graph process-
ing systems, and so on. Making use of the library, each of
the applications only needs about one hundred lines of high-
level code to get highly-optimized implementations.
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The advantage of the Join-based framework and the li-
brary lies in its generality, and its simplicity and efficiency
in both theory and practice.

1. Multiple real-world problems can be solved directly
based on the augmented map abstraction and the PAM
library. This reduces the incremental effort for users to
adapt this tree structure simply as a black box to their
own applications. Because of the functionalities (e.g.,
concurrency, persistence, multi-versioning, garbage
collection) supported, users can deal with the prob-
lems on a higher level of abstraction without worrying
about the details in the implementation.

2. Multiple algorithms and balancing schemes can be
dealt with using generic methodology. The Join func-
tion captures all that is required for rebalancing. As a
result, all algorithms except Join are generic for multi-
ple balancing schemes. This minimizes the coding ef-
fort to re-create the tree structure with special require-
ments when necessary (e.g., in another programming
language). Furthermore, this allows for extendability
to other balancing schemes and parallel algorithms.

This tutorial will also have a hands-on introduction to
the download/installation of the library. We will show code
examples on how to use the framework and the library. This
tutorial will finally show comparisons among different sys-
tems and tree structures under different workloads and ap-
plications, and show analysis on the favored properties for
trees under different scenarios.

The library is available at https://github.com/cmuparlay/
PAM. More information can be found at https://cmuparlay.
github.io/PAMWeb/.

Experimental Settings. All experiments shown in this tu-
torial are tested on a 72-core Dell R930 with 4 x Intel(R)
Xeon(R) E7-8867 v4 (18 cores, 2.4GHz and 45MB L3 cache)
with 1TB memory. Each core is 2-way hyperthreaded giving
144 hyperthreads. The code was compiled with -O2 using the
g++ 5.4.1 compiler which supports the Cilk Plus extensions.

Preliminaries. We call each element (key-value pairs) in
the tree an entry, noted as e = (k,v). We assume keys type
K and value typeV . We define the entry type E = K ×V . We
use l(x) or r (x) to extract the left or right subtree of a tree
node x . We use k(x), v(x) and e(x) to extract the key, value
and entry of a tree node or the root of a (sub)tree.

2 Algorithms
In this tutorial, we will show the Join-based algorithmic
framework. The Join(TL, e,TR ) operation works on two bal-
anced binary trees TL and TR , and a entry e . It will return
a new balanced binary tree in which the in-order traversal
is the in-order traversal of TL , then e , then the in-order tra-
versal of TR . In particular, when the trees are search trees,
the key of e should be larger than all keys in TL , and smaller

1 Split(T ,k) =
2 if T = ∅ then (∅,False,∅)
3 else if k = k(T ) then (l(T ), True, r (T ))
4 else if k < m then let (L′,b,R′)=Split(l(T ),k)
5 in (L′,b,Join(R′, e(T ), r (T )))

6 else let (L′,b,R′)=Split(r (T ),k)
7 in (Join(l(T ), e(T ), L′), b, r (T ))

8 Union(T1,T2) =
9 if T1 = ∅ then T2
10 else if T2 = ∅ then T1
11 else let ⟨L1,v ′,R2⟩ = Split(T1,k(T2))
12 and L = Union(L1, l(T2)) | | R = Union(R1, r (T2))
13 in Join(L, e(T2),R)

14 Insert(T ,k,v) =
15 if T = ∅ then Singleton(k,v)
16 else if k < k(T ) then Join(Insert(l(T ),k,v), e(T ), r (T ))
17 else if k > k(T ) then Join(L, e(T ), Insert(r (T ),k,v))
18 else T

19 MapReduce(T ,д, f , I ) =
20 if T = ∅ then I

21 else let L =MapReduce(l(T ),д, f , I )
22 | | R =MapReduce(r (T ),д, f , I )
23 in f (L, f (д(e(T )),R))

24 Build'(S, i, j) =
25 if i = j then ∅

26 else if i + 1 = j then Singleton(S[i])
27 else letm = (i + j)/2
28 and L = Build'(S, i,m) | | R = Build'(S,m + 1, j)
29 in Join(L, S[m],R)

30 Build(S) =
31 Build'(RemoveDuplicates(Sort(S)), 0, |S |)

Figure 1. Example of algorithms using Join.

than all keys in TR . In the sequential setting, this function
was first defined by Tarjan [21], and later extended to other
balancing schemes [2, 17]. Blelloch et al. describe the Join
algorithms for AVL trees, red-black trees, weight-balanced
trees and treaps, respectively, and use them as primitives for
parallel tree algorithms. The Join function will deal with all
rotation and rebalancing issues for the other algorithms. As
a result, all the other algorithms are identical across multiple
balancing schemes, most of them also parallel.
Figure 1 shows several examples. We show some perfor-

mance numbers in Table 1. The tree scales up to 1010 tree
nodes, and get 50-100x self-speedup. More experimental eval-
uations can be found in [6, 20] along with other operations
such as Filter, Intersection, and MultiInsertion.

3 Augmentation
PAM provides an interface for abstract augmentation of trees.
At a higher level, Sun et al. define the augmented map, which

https://github.com/cmuparlay/PAM
https://github.com/cmuparlay/PAM
https://cmuparlay.github.io/PAMWeb/
https://cmuparlay.github.io/PAMWeb/
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n m T1 T144 Speedup
Union 108 108 12.517 0.2369 52.8
Find 108 108 113.941 1.1923 95.6
Insert 108 − 205.970 − −

Build 1010 − 1844.38 28.24 65.3
Range 108 108 44.995 0.8033 56.0

Table 1. Timings in seconds for various functions in PAM.
Here “T144” means on all 72 cores with hyperthreads (i.e., 144
threads), and “T1” means the same algorithm running on one
thread. “Speedup” means the speedup (i.e., T1/T144).

is an abstract data type (ADT) based on ordered maps. The
purpose of augmented maps is to support quick range-based
abstract sums on ordered maps. For an ordered map with key
type K , ordering on K defined by <K and value type V , we
associate a map-reduce operation on it to define the abstract
sum (of type A).

• The map operation. We define a base function д : K ×

V 7→ A that maps an entry to an augmented value.
• A reduce monoid (A, f , I ).
– The set A that defines the augmented value type.
– The associative function f : A × A 7→ A that com-
bines two augmented values. We call f the combine
function of the augmented map.

– The identity I ∈ A of function f .
We also define the augmented value of such an augmented
mapM = {e1, e2, . . . , en} as A(M) = f (д(e1),д(e2), . . . ,д(en).
Here we extend binary operation f to multiple operands as
f (a1,a2, . . . ,an) = f (a1, f (a2, . . . ,an)).
To support such an ADT, one efficient implementation

is to use augmented trees. In fact, the above interface also
defines a framework for a class of augmented trees. When a
tree structure is used to maintain the ordered map, we store
the abstract sum (augmented value) of the corresponding
subtree in each tree node.

The Join-based algorithms also easily support augmenta-
tion. The update of an augmented value only occur when a
node is involved in rotations, and thus only occur in Join. As
a result, the augmentation can be dealt with by just Join, and
all the other algorithms can be oblivious to the augmentation.
Augmented map is designed to support efficient range-

based partial sum queries. For example, the AugLeft(M,k)
function returns the augmented value for all entries in an
augmented map M up to a key k . Using augmented trees,
this function can be computed in O(logn) calls to the base
and combine functions. More functions on the augmented
interface and the algorithms can be found in [19, 20].

4 Persistence and Concurrency
There is a rich literature on supporting concurrency for tree
structures. There have been many concurrent tree structures
that support in-place concurrent update, e.g., [7, 11, 22]. How-
ever, these data structures only allow for atomic updates for
a single operation.
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using batching.

Another option is to use transactionswithmulti-versioning,
where each concurrent thread works on a (possibly isolated)
version. There are two main approaches supporting multi-
versioning on trees. The first one is to use version chains,
in which a tree node maintains a history of versions and
their values in a chain. This allows for serializability either
using locking [5] or opportunistically [12]. However, the
main drawback is that reading usually requires checking the
visibility of each version in the chain, which can be expen-
sive. The second approach is based on path-copying, which
effectively leads to functional data structures. This avoids
updating internal information of any existing tree node, and
thus avoids contention caused by concurrency. In addition,
any tree pointer effectively provides a snapshot to a certain
version, and reading as well as writing is no more expensive
than working on a single-versioned system. However, con-
current updates would result in two separate versions. To
guarantee serializability, additional techniques are required,
such as version melding in Hyder [15], flat-combining [10]
or other batching- or combining-based approaches [3, 4, 16]
that avoids concurrent writes.

PAM uses path-copying with a single writer. It is however,
possible to batch updates and run them in parallel [4]. In
many cases, using batching based on the bulk operations
with path-copying can be more efficient than using concur-
rent data structures. Figure 2 shows the comparison between
using PAM with batching and some state-of-the-art concur-
rent data structures [7, 11, 14, 22] on Yahoo! Cloud Serving
Benchmark (YCSB) [8] with 5×107 initial nodes and 107 trans-
actions. For PAM, we control the batching latency within
50ms, which is approximately the typical network latency,
and thus is less likely to dominate the cost. More details can
be found in [4]. For all the tested workloads of mixed reads
and writes, PAM with batching shows better performance
than all the other concurrent data structures, especially for
read-heavy workloads.

The Join-based algorithms can be easily extended to sup-
port persistence using path-copying. The observation is that
all copying only occurs in the Join, so all that is needed is a
Join operation that does path copying.

5 Applications
The augmented map abstraction along with the PAM library
can be used in many different applications. Not only does
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Build, s Q-small, µs Q-large, ms
Seq. Par. Spd. Seq. Par. Spd. Seq. Par. Spd.

PAM[19] 244 7.3 33 11 0.13 85 213 2.0 108
PAM*[19] 201 3.2 64 17 0.21 81 45 0.7 65
Boost[1] 315 - - 25 0.51 50 1174 22.4 52
CGAL[13] 526 - - 154 - - 111 - -

Table 2. The running time of 2D range queries - “Seq.”, “Par.”
and “Spd.” refer to the sequential, parallel running time and the
speedup. Q-small and Q-large mean the query time for small and
large query windows, respectively. PAM and PAM* mean the
sweepline algorithm and the range tree using PAM, respectively.

it give efficient implementation for each of the applications,
the solutions are also concise. For example, previous work
has shown examples of 1D interval stabbing query, 2D range
query, 2D segment query, 2D rectangle query, inverted index
searching using PAM. All of them only need around 100
lines of C++ code for a parallel version. A toy example of
the implementation of 1D interval stabbing query is show
in Figure 3, which is almost all the C++ code we need. Using
the augmented tree implementation in PAM, this code effec-
tively leads to a standard interval tree [9] structure. We note
that typically implementing such an interval tree, even a se-
quential version would need hundreds of lines of code, while
using PAM, we only need around 20 lines.We show the result
of 2D range query using PAM (a range tree and a sweepline
algorithm) comparing with two existing sequential libraries:
CGAL [13] and Boost [1]. Sequentially, PAM outperforms
both libraries. The self-speedup of PAM is 50-108.

struct interval_map {
using interval = pair <point , point >;
struct entry {

using K = point;
using V = point;
using A = point;
static bool comp(K a, K b) {return a < b;}
static A I() {return 0;}
static A base(K k, V v) {return v;}
static A combine(A a, A b) {

return (a > b) ? a : b;} };
using amap = aug_map <entry >;
amap m;

interval_map(interval* A, size_t n) {
m = amap(A,A+n); }

bool stab(point p) {
return (amap:: aug_left(m,p) > p);}}

Figure 3. The definition of interval maps using PAM in C++.
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